首页 > 大学本科> 理学> 数学类
题目内容 (请给出正确答案)
[主观题]

设< G,*>是一个群,而a∈G,如果f是从G到G的映射.使得对于每一个x∈G,都有f(x)=a*x*a-1,试证明:f是一个从G到G上的自同构。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设< G,*>是一个群,而a∈G,如果f是从G到G的映射.使…”相关的问题
第1题
设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

点击查看答案
第2题
设< G,*>是一个群,且a∈G。定义一个映射f:G->G,使得对于每一个x∈G,有f(x)=a*x*a-1,试证明f是< G,*>的群自同构。
设< G,*>是一个群,且a∈G。定义一个映射f:G->G,使得对于每一个x∈G,有f(x)=a*x*a-1,试证明f是< G,*>的群自同构。

点击查看答案
第3题
设f1、f2都是从代数系统(A,★)到(B,*)的同态.设g是从A到B的一个映射,使得对任意a∈A都有g(a)=f1(a)*f2(a).证明

设f1、f2都是从代数系统(A,★)到(B,*)的同态.设g是从A到B的一个映射,使得对任意a∈A都有g(a)=f1(a)*f2(a).证明:如果(B,*)是一个可交换半群,那么g是由(A,★)到(B,*)的同态.

点击查看答案
第4题
设f和g都是群(G1,★)到群(G2,*)的同态映射,证明:(C,★)是(G1,★)的一个子群,其中,C={x|x∈G1,且f(x)=g(x)}.

设f和g都是群(G1,★)到群(G2,*)的同态映射,证明:(C,★)是(G1,★)的一个子群,其中,C={x|x∈G1,且f(x)=g(x)}.

点击查看答案
第5题
设X,Y,Z均为距离空间,f是X到Y中的映射,g是Y到Z中的映射,证明: (1)若f,g连续,则复合映射连续; (2)若f,g是

设X,Y,Z均为距离空间,f是X到Y中的映射,g是Y到Z中的映射,证明:

(1)若f,g连续,则复合映射连续;

(2)若f,g是一对一的,则gοf,也是一对一的,反之若gοf是一对一的,则f是一对一的。举例说明,此时g未必是一对一的。试找出gοf是一对一的充分必要条件;

(3)f,g是同胚映射,则gοf也是同胚映射。

点击查看答案
第6题
设(G,*)是一个独异点,并且对于G中的每一个元素x都有x*x=e,其中e是单位元.证明:(G,*)是一个阿贝尔群.

设(G,*)是一个独异点,并且对于G中的每一个元素x都有x*x=e,其中e是单位元.证明:(G,*)是一个阿贝尔群.

点击查看答案
第7题
设G是一个群,a∈G。映射叫做G的一个左平移。证明:(i)左平移是G到自身的一个双射;(ii)设a,b∈G,定义

设G是一个群,a∈G。映射叫做G的一个左平移。证明:

(i)左平移是G到自身的一个双射;

(ii)设a,b∈G,定义λaλba·λb(映射的合成),则G的全体左平移{λa|a∈G}对于这样定义的乘法作成一个群G';

(iii)G≌G'。

点击查看答案
第8题
设(G,*)是群,若在G上定义运算,使得对任何x,y∈G,,证明:也是群.

设<G,*>是一个群,若在G上定义运算·,使得对于任何元素x,y∈G都有x·y=y*x.证明:<G,·>也是群

点击查看答案
第9题
设G与G'都是群,f是群G到G'的同态映射,a∈G.
点击查看答案
第10题
假设f:A→B并定义一个函数G:B→p(A),对于b∈B,G(b)={x∈A|f(x)=b},证明:如果f是A到B的满射,则G是单射.其逆命题

假设f:A→B并定义一个函数G:B→p(A),对于b∈B,G(b)={x∈A|f(x)=b},证明:如果f是A到B的满射,则G是入射的。

点击查看答案
第11题
证明:如果f是由(A,★)到(B,*)的同态映射,g是由(B,*)到(G,△)的同态映射,那么,是由(A,★)到(G,△)的同态映射.

证明:如果f是由(A,★)到(B,*)的同态映射,g是由(B,*)到(G,△)的同态映射,那么,是由(A,★)到(G,△)的同态映射。

点击查看答案
退出 登录/注册
发送账号至手机
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改